NASA TECHNICAL NOTE

NASA TN D-1111

A MATHEMATICAL TREATMENT OF THE
PROBLEM OF DETERMINING THE EIGENVALUES
ASSOCIATED WITH A PARTITION FUNCTION OF
AN ATOM IN THE INTERIOR OF A PLASMA

by E. Baylis Shanks
George C, Marshall Space Flig/)t Center
Huntsville, Alabama

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION + WASHINGTON, D. C. = OCTOBER 1963






TECHNICAL NOTE D-1111

A MATHEMATICAL TREATMENT OF THE PROBLEM OF DETERMINING
THE EIGENVALUES ASSOCIATED WITH A PARTITION FUNCTION
OF AN ATOM IN THE INTERIOR OF A PLASMA
By E. Baylis Shanks

George C. Marshall Space Flight Center
Huntsville, Alabama

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

values tor nine diiterent cases.

I. INTRODUCTION
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where we have set ej = —+ . The determinant Pj in equation 6 is a polynomial in u of

degree i and each root of bi 4 = Ois a root of Pj= O, and conversely. Hence, the two
polynomials differ only by a constant multiple. Comparing the leading coefficients, we

readily deduce the relation

Pi = d2d3 e e di+1 bi+1.

(7)

By a careful analysis of the determinant Py, it is found that the coefficients of ul, ui-1,

u1'2, and ui-3 are respectively
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which simplifies to

i(i-1) Y 1 :
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the sum of the squares of the roots is

1
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d (k) = (k+j) -
since S le’ = ( E Xj)l’ - 2j§’mxmxj. These considerationsiprovide precise information
concerning the roots. The roots deviate about the values oo and the deviations have

k+_]
a net sum of zero so thal some are positive and some are negative (the positive devi-
ations might be accounted for mostly because of pairs of conjugate imaginary roots),
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The average deviation of the squares of the roots from the values (k)2 is d(kH)

which definitely suggests the presence of imaginary roots in many cases fori > 1. When
1is increased by 1, a new root is introduced and the net effect on the sum of the roots is

as though the roots of Pj+ ar and the roots of P;. However, each real root of

1 ¢ k+i+1

P, is greater than as is verified by an analysis of the determinant P;, which has a

k+i
! 1

positive value when u = TR This may be shown by substituting such a value in Py

for u and successively eliminating the —dj, leaving only positive values down the main

diagonal and zeroes everywhere below it; or, in case u = , one can eliminate all

k+1

the ~dj except -dj and, as before, P; has a positive value. Since the eigenvalues are
» . 1

*15((1]\‘;111))— + jz (ki_l_j)z‘ » we have this condition on the po-

tential eigenvalues. The sum of the products of the roots taken three at a time is

i
given by u® and }_I u? = -

> 1 L ot () (2ke) j+2k+2)
P> > m  (k-+m) (k+j) (k+p) 8l? T’ (i+k) (jtk+1) (j+k+2)

(i-2) (i+1)

the second summation having the value 5

i-2) (i+
in this case is Ll—*l%—i—)—— Considering all of these facts, there is an indication that

for d large, the deviations are small and vice versa, that there are a few large positive
deviations in the most recently introduced roots and in the case of conjugate imaginary
roots, and that the less recently introduced roots (which are the largest) tend to stabi-

when k=0, so that the net deviation

lize slightly below a value at the square root of a potential eigenvalue, One might

1
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(k+j)? d "
of the squares of the roots from the values _(W is -

take u® = as an approximation to an eigenvalue since the average deviation
i-1

n d(k+i)

- 3 as i becomes infinite. This suggests the inequality d = (k+j)? as a first approximate

, which approaches

limit to the number of eigenvalues where d is finite. This will be reconsidered later.

The coefficient 2dxe > of one term in y or equation 2 is approaching zero at a
weakly varying rate for extremely large values of x, when compared to the other coef-
ficients. It might be expected that a reasonable approximation would be obtained by
treating e ~X as a constant, leading to the equation

. -C
i1 ai+1 = [(kHi) u-e ] a, (8)
and the eigenvalues
Lot
k+n ’

where the notation ¢, indicates that the constant varies with n, which takes into account
the fact that 8 is only an approximation to equation 3. Through the first two terms, when

e n ig expended into a Taylor series, this agrees with the discussion for k=0 of Ecker

and Weizel provided we take ¢, equal to 1 (k+n)%. Thus we have as a second estimate

to the eigenvalues d
_ (k+n) 2

1 a . (9)

k+n

To check these approximations further, the determinant equation 6 was solved
numerically fori =1, 2, ..., 10. In addition, the values so obtained were further re-
fined by evaluations of the determinants Pyq, Py, and Pyy. Finally a routine was devised
based on the recursion formula 4 and the calculations made including the cases i =1,

2, ..., 75. The latter routine was especially efficient, giving information in 75 cases
instead of one case and in about one-fifth of the time taken for the one case.

I, CONCLUDING REMARKS

Onthe basis of the above and other considerations, the following is presented as
the best estimate of the values of the eigenvalues

1 ktn (k+n)® - 2k(n+1)
k+n d 4d* ’ (10)




The values u of equation 10 are thought to be a little more than the true values, leading
to the implication that the number of eigenvalues are limited by the following inequality

1
2d = (k+n)? + | 2k(n+1) (k+n) | 2 ’ )

where n is to take positive integral values and satisfy the inequality. The number of
eigenvalues is not greater than the maximum such n (this assumes the correctness of
the previous remark).

The numerical results obtained as explained above are summarized in the following
tabular data. The values taken for d have been used on the basis of numerical conven-
ience in machine computation. The values themselves are not as important as the gener-
al magnitude of this parameter, which may take on any non-negative real value. The
parameter k, on the other hand, must be a non-negative integer. The tabular data could
be expanded on the basis of the techniques already developed. In fact, the predictor
equation 10 may be sufficiently accurate for most cases, the truncation error zpparently
being of the order of d~" (this remark is based on theoretical reasons as well as on
the tabular data below).

d = 1000 d =100

k=0 k=1 k=2 k=0 k=1 k=2
. 99900025 . 98002475
. 49800199 . 49800099 .48019431 . 48009421
. 33034004 . 3303384 . 33033554 . 30396993 . 30381937 . 30351756
. 24601583 .24601383 . 24600983 .21145270 .21125064  ,21084493
. 19503074 . 19502823 . 19502323 . 15271597 . 15246021 . 15194527
. 16071941 . 16071640 . 16071040 . 12454326 . 12285380 . 12136559
. 13594022 . 13593672 . 13592972
. 11712289 .11711888 .11711085
. 10228432 . 10227976 .10227081 d=10
. 090234950 . 090229537 . 090219821
. 080219801 . 080214067 . 080201641 k=0 k=1 k=2
. 071725530 . 071697400 . 071703049 . 90228380
. 064500631 . 064424424 . 064505604 . 40339323 . 39722151 . 37764286

In gencral, as i increasces in Pj, the roots for k and n large make their initial ap-
pecarance. The tabular data indicates a definite trend in agreement with inequality 11
and equation 10 agrees with the data in & remarkable way, as one may verify by evalu-
ation of u in cquation 10. The estimate duc to Ecker and Weizel is equivalent to
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- 5t - .., i we take x to be i which gives the most favorable choice in
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general, It may be seen from the tabular data that by our choice of x,, the results are
good but do not give an estimate as good as equation 10.

For each such eigenvalue, the eigenfunction Fy, is given by the equation

- 0 . k+.
F =e udx > (-1t (12)
j=1 !
here by i bit tant not b, , = P. (d,d d )‘1 d =L
where by is an arbitrary constant not zero, 17 j( 2d3 <+« dypq » 544 T2

j(j+2k+1), P, is the determinant in equation 6, u is determined by equation 10 (approxi-
mately), and n satisfies the restriction 11.
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